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Abstract—This work introduces bounds on the capacity of
molecular timing (MT) channels, where information is modulated
on the release timing of multiple indistinguishable information
particles, and decoded from the times of arrival at the receiver.
It is shown that for diffusion-based MT channels, the capacity
scales linearly in the number of particles. This is analogous to
receiver diversity as each particle takes a random independent
path. However, unlike receiver diversity in wireless channels,
which mitigates fading, this form of diversity in MT channels
can be used to significantly increase data rate.

I. INTRODUCTION

In molecular communication, information is modulated on
different properties of small particles (e.g., concentration, the
type, the number, or the time of release) that are released by
the transmitter [1]. The information particles are transported
from the sender to a receiver through different means such
as: diffusion, active transport, bacteria, and flow [1]. Several
experimental platforms have been developed in recent years
that are capable of transmitting short messages [2].

In this work, we consider the molecular timing channel
(MT) presented in [3], where information is modulated on
the time of release of the information particles. In biology,
time of release my be used in the brain at the synaptic cleft,
where two chemical synapses communicate over a chemical
channel [4]. The released information particles propagate from
the transmitter to the receiver through some random process
that results in a random delay in time until detection at the
receiver. A common assumption, which is accurate for many
sensors, is that the particle is absorbed and then removed from
the environment as part of the detection process [3]. Thus, the
random delay until the particle first arrives at the receiver can
be represented as an additive noise term.

One may observe some similarities between the timing
channel considered in this work and the timing channel con-
sidered in [5], which studied the transmission of bits through
queues. Yet, the problem formulation and the noise models are
fundamentally different. In [5], the queue induces an order on
the channel output (i.e. arrival times), namely, the first arrival
time corresponds to the first channel use, the second arrival
corresponds to the second channel use, and so on. On the other
hand, in molecular channels with indistinguishable particles,
order may not be preserved, as was observed in [6].

To account for the lack of ordering, in [3] we considered
an MT channel where the transmitter encodes messages over
a finite time interval, called the symbol interval, by releasing
particles at a corresponding times in that interval. Furthermore,
the released information particles have a finite lifetime, called
the particle’s lifetime, after which they spontaneously dissi-

pate. Note that many particles naturally degrade over time and
the speed of this process can be controlled through chemical
reactions, e.g., through enzymes [7]. Using this scheme, a
single channel use interval is the sum of the symbol interval
and the particle’s lifetime, and the channel can then be used
sequentially without intersymbol interference.

Some of the other previous works on molecular timing chan-
nels focused on the additive inverse Gaussian noise (AIGN)
channel, which features a positive drift from the transmitter
to the receiver [8]–[11]. In this case, the first time of arrival
over a one-dimensional space follows the inverse Gaussian
distribution, giving the channel its name. In these works, the
upper and lower bounds on the maximal mutual information
between the AIGN channel input and output, denoted in this
work by capacity per channel use, were provided for different
input and output constraints. However, it is not clear what the
associated capacity in bits per second is in these works.

In [3] we studied the case where a single particle is released
during the symbol interval, and derived tight upper and lower
bounds on the capacity of the diffusion-based MT (DBMT)
channel. In the current work, we extend the results of [3] to
the case where M particles are released during the symbol
interval. In particular, we derive upper and lower bounds
on the capacity of this channel, and show that when M
indistinguishable particles are simultaneously released, the
upper and lower bounds derived in [3] scale by a factor of
M . Thus, the capacity of this channel also scales linearly with
M . Propagation in this case is reminiscent of receive diversity
in electromagnetic communication as each particle takes a
random independent path. Since in molecular communication
many tiny particles can be released simultaneously, high data
rates can be achieved in DBMT channels. We further note that
by using M distinguishable particles, one obtains M parallel
and independent channels. Thus, in this case, the capacity
scales exactly by a factor of M . On the other hand, when the
particles are indistinguishable, the channel is not necessarily
parallel due to the lack of ordering. Yet, we show that through
the simple scheme of simultaneous release of indistinguishable
particles, the optimal linear-order scaling of the capacity is
achievable.

The rest of this paper is organized as follows. The system
model and the problem formulation are presented in Section
II. The capacity of the DBMT channel with multiple particles
is studied in Section III through lower and upper bounds on
this capacity. Concluding remarks are provided in Section IV.

Notation: We denote the set of real numbers by R, the set of
positive real numbers by R+, and the set of positive natural



numbers by N. Other than these sets, we denote sets with
calligraphic letters, e.g., J , where |J | denotes the cardinality
of the set J . [n] denotes the set {1, . . . , n}. We denote random
variables (RVs) with upper case letters, e.g., X , Y , and their
realizations with the corresponding lower case letters, e.g., x,
y, and vectors with boldface letters, e.g., X,Y. The ith element
of a vector X is denoted by X[i]. We use fY (y) to denote
the probability density function (PDF) of a continuous RV Y
on R, fY |X(y|x) to denote the conditional PDF of Y given
X , and FY (y) to denote the cumulative distribution function
(CDF). We use h(·) to denote the entropy of a continuous
RV and I(·; ·) to denote the mutual information between two
continuous RVs, as defined in [12, Ch. 8]. Finally, X ↔ Y ↔
Z is used to denote a Markov chain formed by the RVs X,Y, Z
as defined in [12, Ch. 2.8].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. The Molecular Timing Channel
We consider a molecular communication channel in which

information is modulated on the time of release of the in-
formation particles. The information particles themselves are
assumed to be identical and indistinguishable at the receiver.
Therefore, the receiver can only use the time of arrival to
decode the intended message. The information particles prop-
agate from the transmitter to the receiver through some random
propagation mechanism (e.g. diffusion). To develop our model,
we make the following assumptions about the system:
A1) The transmitter and receiver are perfectly synchronized in

time. The transmitter perfectly controls the release time
of the particles, while the receiver perfectly measures the
arrival times.

A2) An information particle which arrives at the receiver is
absorbed and removed from the propagation medium.

A3) All information particles propagate independently of each
other, and their trajectories are random according to an
independent and identically distributed (i.i.d.) process.

Note that these assumption have been traditionally considered
in all previous works [6], [8]–[11] to make the models
tractable. Next, we formally define the channel.

Let Tx,k ∈ Rm+ , k ∈ [K], denote the times of the kth

transmissions for the m ∈ N indistinguishable particles re-
leased into the medium by the transmitter. The transmitted
information is encoded in the sequence of times Tx,k, k∈ [K],
where Tx,k are assumed to be independent of the random
propagation time of each of the information particles. Let Ty,k

be an m-length vector consisting of the times of arrival of each
of the information particles, i.e., Ty,k[i] is the arrival time of
the ith particle released at time Tx,k[i]. Therefore, we have
Ty,k[i] ≥ Tx,k[i], i ∈ [m]. Thus, we obtain the following
vector additive noise channel model:1

Ty,k = Tx,k +Tn,k, (1)

where Tn,k[i], i ∈ [m], is a random noise term representing
the propagation time of the ith particle of the kth transmission.

1Here we place no assumption on the particles’ lifetimes, namely, they do
not dissipate before arriving at the receiver.

Fig. 1. The MT channel in (2). The channel input is Tx,k[i], while the
channel output depends on the condition Tn,k[i] ≷ τn.

Note that assumption A3) implies that all the elements of Tn,k

are independent.
One of the main challenges of the channel in (1) is that the

particles from different channel uses may arrive out of order,
which results in channel memory. To resolve this issue, we
make two assumptions. First, we assume that at the beginning
of each transmission there is a finite time interval called the
symbol interval over which the transmitter can choose times to
release the information particles for that transmission. Second,
we assume that information particles have a finite lifetime, i.e.,
they dissipate immediately after this finite interval, denoted by
the particle’s lifetime. By setting the channel use interval to
be a concatenation of the symbol interval and the particle’s
lifetime, we ensure that order is preserved and obtain a
memoryless channel.

Let τx < ∞ be the symbol interval, and τn < ∞ be the
particle’s lifetime (i.e. each transmission interval is equal to
τx+τn). Then our two assumptions can be formally stated as:
A4) The release times obey:

(k−1) · (τx+τn)≤Tx,k[i]≤ (k−1) · (τx+τn)+τx,
A5) The information particles dissipate and are never received

if Tn,k[i] ≥ τn, i ∈ [m].
The first assumption can be justified by noting that the
transmitter can choose its release interval, while the second
assumption can be justified by designing the system such that
information particles are degraded in the environment after
a finite time (e.g. using chemical reactions) [7], [13]. The
resulting channel, which we call the molecular timing (MT)
channel, is given by:

Ỹk[i] =

{
Ty,k[i] = Tx,k[i] +Tn,k[i], Tn,k[i] ≤ τn
φ, Tn,k[i] > τn

, (2)

where φ is the empty symbol (i.e., a symbol indicating nothing
has arrived), Tx,k is the channel input, i.e., the kth release
timing vector, Ty,k[i] is the arrival time of the ith information
particle at the receiver (if it arrives), and Ỹk is an m-length
vector of channel outputs at the kth channel use interval. The
ith element of the MT channel (2) is depicted in Fig. 1.
We emphasize that the receiver observes a sorted version of
the channel output Ỹk, which we denote by Yk. Next, we
formally define the capacity of the MT channel with input
Tx,k and output Yk.
B. Capacity Formulation for the MT Channel

Let Ak , [(k− 1) · (τx + τn), (k− 1) · (τx + τn) + τx] and
Bk , {[(k − 1) · (τx + τn), k · (τx + τn)] ∪ φ} for k ∈ [K].
We now define a code for the MT channel (2) as follows:

Definition 1 (Code): A (K,R, τx, τn) code for the MT
channel (2), with code length K and code rate R, consists



Fig. 2. Illustration of the encoding procedure of Definition 1 for K = 3
and m = 1. Red pulses correspond to transmission times, while blue pulses
correspond to arrival times at the receiver.

of a message set W = {1, 2, . . . , 2K(τx+τn)R}, an encoder
function ϕ(K) :W 7→ Am1 ×Am2 × · · · × AmK , and a decoder
function ν(K) : Bm1 × Bm2 × · · · × BmK 7→ W .

Remark 1: Observe that since we consider a timing channel,
similarly to [5], the codebook size is a function of τx + τn,
and K(τx + τn) is the maximal time that it takes to transmit
a message using a (K,R, τx, τn) code. Furthermore, note
that the above encoder maps the message W ∈ W into
K m-dimensional vectors of time indices, Tx,k, k ∈ [K],
where Tx,k ∈ Amk , while the decoder decodes the trans-
mitted message using the (sorted) K × m channel outputs
Yk, k ∈ [K], where Yk ∈ Bmk . We emphasize that this
construction prevents intersymbol interference, namely, the m
particles transmitted at the interval Ak either arrive before the
m particles transmitted at the interval Ak+1 or never arrive.
Thus, we obtain K identical and independent channels (per
channel use interval). However, note that within the channel
use interval the arrivals of the m particles are not ordered.
Finally, we note that this construction was not used in [5]
since, when transmitting bits through queues, the channel itself
forces an ordering.

The encoding and transmission through the channel are
illustrated in Fig. 2 for the case of K = 3 and m = 1.
The encoder produces three release times {Tx,1, Tx,2, Tx,3}
which obey Tx,k ∈ Ak, k = 1, 2, 3. In each time index a
single particle is released to the channel which adds a random
delay according to (2). The channel outputs are denoted by
{Y1, Y2, Y3}. It can be observed that while Y1 = Ty,1 =
Tx,1 + Tn,1 and Y2 = Ty,2 = Tx,2 + Tn,2, Y3 = φ since
Tn,3 > τn and therefore the third particle does not arrive.

Definition 2 (Probability of Error): The average probability
of error of a (K,R, τx, τn) code is defined as:

P (K)
e , Pr {ν(Y1,Y2, . . .YK) 6=W} ,

where the message W is selected uniformly from the message
set W .

Definition 3 (Achievable Rate): A rate R is called achievable
if for any ε > 0 and δ > 0 there exists some blocklength
K0(ε, δ) such that for every K > K0(ε, δ) there exists a
(K,R− δ, τx, τn) code with P (K)

e < ε.
Definition 4 (Capacity): The capacity C is the supremum of

all achievable rates.
Remark 2: Note that even though we consider a timing

channel, we define the capacity in terms of bits per time unit
[5, Definition 2]. This is in contrast to the works [8]–[11]
which defined the capacity as the maximal number of bits
that can be conveyed through the channel per channel use.

Note that this definition of capacity C for the MT channels
is fairly general and can be applied to different propagation
mechanism as long as Assumptions A1)–A5) are not violated.
Our objective in this paper is to characterize the capacity of
the MT channel for diffusion-based propagation.

C. The Diffusion-Based MT Channel

In diffusion-based propagation, the released information
particles follow a random Brownian path from the transmitter
to the receiver. In this case, to specify the random additive
noise term Tn,k[i] in (2),we define a Lévy-distributed RV as
follows:

Definition 5 (Lévy Distribution): Let the RV Z be a Lévy-
distributed RV with location parameter µ and scale parameter
c. Then, its PDF is given by

fZ(z) =


√

c
2π(z−µ)3 exp

(
− c

2(z−µ)

)
, z > µ

0, z ≤ µ
, (3)

and its CDF is given by

FZ(z) =

erfc

(√
c

2(z−µ)

)
, z > µ

0, z ≤ µ
. (4)

Throughout the paper, we use the notation Z ∼ L (µ, c) to
indicate a Lévy RV with parameters µ and c.

Let r denote the distance between the transmitter and
the receiver, and d denote the diffusion coefficient of the
information particles in the propagation medium. Following
along the lines of the derivations in [8, Sec. II], and using
[14, Sec. 2.6.A], it can be shown that for 1-dimensional pure
diffusion, the propagation time of each of the information
particles follows a Lévy distribution, and therefore the noise
in (2) is distributed as Tn,k ∼ L (0, c) with c = r2

2d . In this
case, we call the diffusion-based MT channel in (2) the DBMT
channel.

Remark 3: In [15] it is shown that for an infinite, three-
dimensional homogeneous medium without flow, and a spher-
ically absorbing receiver, the first arrival time follows a scaled
Lévy distribution. Thus, the results presented in this paper can
be extended to 3-D space.

III. THE CAPACITY OF THE DBMT
CHANNEL WITH DIVERSITY

In [3], we defined the capacity of the MT channel, for m =
1, and provided upper and lower bounds on the capacity for
this case. In this section, we extend the results of [3] to the
case where m > 1. To simplify the analysis, we consider the
special case wherein every symbol interval has all its particles
released simultaneously. In this case the lack of intra-symbol
ordering has no effect. At the end of this section we obtain
bounds on the capacity of the general case using the bounds
derived for this simplified setting.

A natural question that arises from the work [3] is: Can the
capacity be increased by releasing multiple particles, namely,
using m > 1? and, if the answer is positive then how does the
capacity scale with m? In [10, Sec. IV.C] it is shown that by
releasing multiple particles one can reduce the probability of



Cm(τn) = max
τx,F(τx)

 1

τx + τn

∑
J=[m̄]:m̄∈[m]

I
(
Tx[J ];Ty[J ]

∣∣Tn[J ] ≤ τn
)
· v(p,m, |J |)

 . (6)

error; yet, it is not clear if and how the capacity scales with
the number of particles which are simultaneously released in
each transmission interval Ak (see Section II-B for detailed
definitions). In this section we show that the capacity of the
DBMT channel scales linearly with m, for any value of the
Lévy noise parameter c. This is analogous to receive diversity
since each particle follows an independent path from the
transmitter to the receiver.

We begin our analysis by noting that as the particles are
released simultaneously, we have Tx,k[i] = Tx,k, i ∈ [m], k ∈
[K]. We further define the set Jk , {j : Tn,k[j] ≤ τn}, k ∈
[K], which is the set of the indices of all particles which
arrive within the interval [(k − 1) · (τx + τn), k · (τx + τn)].
Clearly, |Jk| ≤ m. Note that if there exists l ∈ [m] such that
l /∈ Jk, then the output of the channel for the lth particle by (2)
is φ, and therefore this particle does not convey information
over the channel. More precisely, let Yk,Jk

denote the vector
Yk[j], j ∈ Jk, and Yk,J c

k
denote the vector Yk[l], l /∈ Jk.

We now write:
I(Tx,k;Yk) = I(Tx,k;Yk,Jk

,Yk,J c
k
)

= I(Tx,k;Yk,Jk
).

Since all the particles are statistically indistinct, the term
I(Tx,k;Yk,Jk

) depends on |Jk| and not on the specific indices
of the set Jk. In fact, one can re-label the transmitted particles
such that the first |Jk| are the particles that arrive within the in-
terval [(k−1)·(τx+τn), k·(τx+τn)]. Therefore, in the following
we slightly abuse the notation and let Jk = {1, 2, . . . , |Jk|}.
We define Ty,k[Jk], [Ty,k[1],Ty,k[2], . . . ,Ty,k[|Jk|]], while
Tn,k[Jk] is defined in a similar manner. Finally, we define
Tx,k[Jk] to be a vector of length |Jk| with all its elements
equal to the repeated values Tx,k. With this notation we now
define a channel equivalent to (2):

Yk =

{
φ, |Jk| = 0

Ty,k[Jk]=Tx,k[Jk]+Tn,k[Jk], |Jk| > 0
. (5)

Let Cm(τn) denote the capacity of the DBMT channel with
diversity in (2), and therefore also the capacity of the channel
(5). In addition, let p , FTn(τn), and define the function
v(p,m, i) ,

(
m
i

)
pi(1−p)m−i, i ∈ [m]. The following theorem

characterizes Cm(τn):
Theorem 1: Cm(τn) is given by (6) at the top of the page,

where the condition Tn[J ] ≤ τn reads Tn[j] ≤ τn,∀j ∈
J ,Tn[l] > τn,∀l /∈ J .

Proof: The proof is provided in [16, Sec. IV].
Similarly to the single-particle case studied in [3], obtaining

an exact expression for the capacity is highly complicated,
thus, we turn to upper and lower bounds. Let X be a
continuous RV with PDF fX(x) and CDF FX(x), and let τ be
a real constant. In [3, Thm. 2] we provide a general expression
for h(X|X ≤ τ). For the specific case of a Lévy-distributed

RV, h(X|X ≤ τ) can be calculated using the result of [3,
Lemma 1]. Next, we define g(τx, τn, Tn) as:

g(τx, τn, Tn) , 0.5 log
(
τ2
x + 22h(Tn|Tn≤τn)

)
. (7)

The upper and lower bounds on capacity are now given in the
following theorem.

Theorem 2: The capacity of the DBMT channel with di-
versity is bounded by Clb

m(τn) ≤ Cm(τn) ≤ Cub
m(τn), where

Clb
m(τn) and Cub

m(τn) are given by:

Clb
m(τn),m·FTn

(τn)max
τx

g(τx, τn, Tn)−h(Tn|Tn ≤ τn)
τx + τn

(8)

Cub
m(τn),m·FTn

(τn)max
τx

log(τx + τn)−h(Tn|Tn ≤ τn)
τx + τn

.

(9)

Remark 4: Note that for m=1 the upper and lower bounds
of Thm. 2 specialize to the bounds presented in [3, Thm. 3].

Proof: First, we note that the conditional mutual infor-
mation in (6) can be written as:

I
(
Tx[J ];Ty[J ]

∣∣Tn[J ] ≤ τn
)

= h
(
Ty[J ]

∣∣Tn[J ]≤τn
)
−h
(
Tn[J ]

∣∣Tn[J ]≤τn
)
. (10)

Next, we explicitly evaluate h
(
Tn[J ]

∣∣Tn[J ] ≤ τn
)

and
bound h

(
Ty[J ]

∣∣Tn[J ] ≤ τn
)
. From assumption A3) we

have:

h
(
Tn[J ]

∣∣Tn[J ] ≤ τn
)
=

|J |∑
j=1

h
(
Tn[j]

∣∣Tn[j] ≤ τn
)

= |J | · h (Tn|Tn ≤ τn) . (11)

Next, we bound h
(
Ty[J ]

∣∣Tn[J ] ≤ τn
)
. For the lower

bound we write:

h
(
Ty[J ]

∣∣Tn[J ] ≤ τn
)

= h
(
Tx[J ] +Tn[J ]

∣∣Tn[J ] ≤ τn
)

≥ 0.5 · |J | · log
(
22h(Tx)+22h(Tn[J ]|Tn[J ]≤τn)/|J |

)
(12)

= 0.5 · |J | · log
(
22h(Tx) + 22h(Tn|Tn≤τn)

)
, (13)

where (12) follows from the EPI: note that from the inde-
pendence of the release time and the propagation RVs we
have h

(
Tx[J ]

∣∣Tn[J ]≤τn
)
= h (Tx[J ]), and since Tx[J ]

consists of |J | replications of Tx we have h (Tx[J ])=h(Tx).
Moreover, note that Tn[J ] is a random vector over R|J |+ , and
therefore, in the EPI we normalize h(Tn[J ]|Tn[J ] ≤ τn) by
|J |. Finally, (13) follows from the fact that the propagation
RVs are independent, see assumption A3).



Next, we upper bound h(Tx) by log(τx), which implies that

h
(
Ty[J ]

∣∣Tn[J ] ≤ τn
)
≥ |J |g(τx, τn, Tn).

Therefore (6) can be lower bounded by:
m∑
j=1

(g(τx, τn, Tn)−h(Tn|Tn ≤ τn))·j ·v(p,m, j). (14)

Finally, using the expression for the mean of a Binomial RV
[17, Ch. 16.2.3.1], we write:

m∑
j=1

j · v(p,m, j) =
m∑
j=1

j ·
(
m

i

)
pi(1− p)m−i = mp. (15)

Combining (15) with (14) and recalling that p = FTn
(τn) we

obtain the lower bound in (8).
Next, for the upper bound we write:

h(Ty[J ]|Tn[J ] < τn) ≤ |J | log(τx + τn), (16)
where (16) is due to the fact that the uniform distribution
maximizes entropy over a finite interval. Following steps
similar to those leading to (14), and applying (15) we obtain
the upper bound in (9).

Corollary 1: The capacity of the DBMT channel with
diversity increases linearly with m.

Remark 5: The channels (2) and (5) have a single input
Tx,k and multiple outputs Yk. Thus, by simultaneously re-
leasing m > 1 particles we achieve receive diversity. As
the propagation of all particles is independent and identically
distributed, the channel (2) can also be viewed as a single-
input-multiple-output (SIMO) channel in which all the channel
outputs experience an independent and identical propagation
law. Corollary 1 states that Cm(τn) scales linearly with m,
regardless of the Lévy noise scale parameter c. An analogous
problem in electromagnetic communications is the capacity of
the static and symmetric SIMO channel with additive white
Gaussian noise. While in the low signal-to-noise ratio regime
this capacity scales linearly with the number of receive channel
outputs, in the high signal-to-noise ratio regime the scaling is
logarithmic [18, Thm. 9.1]. This emphasizes the difference
between MT channels and electromagnetic channels.

Remark 6: Consider the case of releasing m distinguishable
particles, not necessarily simultaneously. This is analogous
to using the channel in [3] m times, since each particle
is different and independent of the others. Therefore, the
capacity in this case is exactly m times the capacity of
the single particle case. From (8)–(9), we observe that even
for simultaneous release of indistinguishable particles, the
upper and lower bounds are m times those derived in [3].
We also observe that due to the data processing inequality,
the capacity of non-simultaneously releasing distinguishable
particles is not less than the capacity of non-simultaneously
releasing indistinguishable particles. This in turn is not less
than the capacity of simultaneously releasing indistinguishable
particles, since we restrict the class of encoding functions.
Therefore, the loss in capacity due to simultaneously releasing
all the particles, and using indistinguishable particles, is at
most m(Cub

1 (τn)− Clb
1 (τn)). In fact, in settings where the

bounds are tight, for example, when τx � τn, see [16, Remark
5], the capacities for both cases are roughly equal.

IV. CONCLUSIONS

In this work we considered MT channels, where the infor-
mation is modulated on the release time of indistinguishable
particles. We showed that for the DBMT channel, the capacity
increases linearly with the number of released particles when
they are simultaneously released. This is analogous to receive
diversity as each particle propagates to the receiver inde-
pendently. An important consequence of these results is that
in DBMT channels, using the simple implementation setting
of multiple indistinguishable particles can result in similar
achievable information rates as the simple decoder setting of
perfectly distinguishable particles.
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